
Graves-CPA: A Graph-Attention Verier
Selector (Competition Contribution)

Will Leeson() and Matthew B. Dwyer

University of Virginia, Charlottesville VA 22903, USA
{will-leeson,matthewbdwyer}@virginia.edu

Abstract. Graves-CPA is a verication tool which uses algorithm se-
lection to decide an ordering of underlying veriers to most eectively
verify a given program. Graves-CPA represents programs using an
amalgam of traditional program graph representations and uses state-
of-the-art graph neural network techniques to dynamically decide how
to run a set of verication techniques. The Graves technique is imple-
mentation agnostic, but it’s competition submission, Graves-CPA, is
built using several CPAchecker congurations as its underlying veriers.

Keywords: Software Verication · Graph Attention Networks · Graph
Neural Networks · Algorithm Selection

1 Verication Approach

Graves-CPA is an algorithm selector for software verication based on graph
neural network techniques. As the tool PeSCo [14] has shown, dynamic order-
ing of verication techniques can result in faster and more accurate verication.
Computing an ordering on techniques dynamically will incur some runtime, but
an eective ordering will oftentimes make this overhead insignicant in compari-
son to the time saved by using a more appropriate technique. Like most algorithm
selectors, Graves-CPA uses machine learning to make its selections. However,
it uses graph neural networks (GNNs) so it can represent programs using tra-
ditional program abstractions, such as abstract syntax trees (ASTs). Graves-

CPA uses a variant of GNNs called Graph Attention Networks (GATs) [16].
GATs use a learned attention mechanism which is trained to learn the impor-
tance of edges in a given graph.

GNNs are an emerging eld in machine learning. Traditional neural networks
accept input vectors, which have a xed size and a natural ordering on elements,
but graphs, in general, have neither. GNNs avoid these issues by operating on
individual nodes in the graph, instead of the graph as a whole [15]. Typically, the
input to a GNN is the current representation of a node v and a collation of the
representations of its neighboring nodes. The output is then a new representation
for v. This process is repeated independently for all nodes in the graph. Thus, the
number of nodes in the graph and order in which they are processed is irrelevant.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13244, pp. 440–445, 2022.
https://doi.org/10.1007/978-3-030-99527-0_28



The Graves technique is tool agnostic [11], meaning it can be trained to
select from any set of veriers. Our competition contribution selects an ordering
from the techniques utilized by CPAchecker [3], similar to PeSCo in previous
competitions.

To form its selection, Graves-CPA produces a graph representation of a
given program, G, which is based on its AST with control ow, data ow, and
function call and return edges added between the tree’s nodes. The AST’s nodes
and edges ensure the semantics of the statements in the program are maintained.
Control ow edges maintain the branching and order of execution between these
statements. Data ow edges explicitly relate the denitions, uses, and interac-
tions of values in the program. G is passed to a GNN, consisting of a series
of GATs, which outputs a graph feature vector This feature vector is nally
passed to a fully connected neural network which decides the sequence in which
Graves-CPA’s suite of verication techniques are run.

2 System Architecture

2.1 Graph Generation

To generate a graph from a program, Graves-CPA relies on the AST produced
by the C compiler Clang [10]. Using a visitor pattern [9],Graves-CPA walks the
AST to generate data ow edges and the edges of the program’s Interprocedural
Control Flow Graph (ICFG). Function call and return edges in the ICFG are
those which can be determined purely syntactically. Using the ICFG and data
ow edges, Graves-CPA produces additional data ow edges using the work-
list reaching denition algorithm [1]. We limit the number of iterations of the
reaching denition algorithm, making our data edges an under-approximation of
possible data ow edges. Once this graph is generated, it is parsed into a list of
nodes and several edge sets. Nodes represent the AST token which corresponds
to them using a one-hot encoding. These nodes and edges are used as input to
the GNN.

2.2 Prediction

To form a prediction, Graves-CPA uses a GNN, visualized in Figure 1, which
consists of 2 GAT layers, a jumping knowledge layer [17], and an attention-
based pooling layer [12]. The GAT layers are crucial to our technique. When
propagating data through the graph, the attention mechanisms in each layer
weights edges so information important to predictions is more prominent than
superuous data.

The jumping knowledge layer concatenates intermediate graph representa-
tions, denoted by A, B, and C, allowing the model to learn from each represen-
tation. The attention-based pooling layer calculates an attention value for each
node in the graph. All nodes are weighted by their respective attention values
and then summed together to form a graph feature vector. The combination of

Graves-CPA 441



Fig. 1. Graves’ uses a GNN comprised of 2 GAT layers, a Jumping Knowledge layer,
and attention pooling layer. These layers produce a graph feature vector which a 3
layer prediction network uses to order veriers for sequential execution. An in depth
description of this architecture can be found in Leeson et al. [11].

GAT layers and the attention-based pool allows the network to weigh the im-
portance of both edges and nodes when forming the graph feature vector. This
feature vector is fed to a three layer neural network which decides the sequence
of tool execution.

Graves-CPA was trained using data collected from running 5 congurations
of the CPAchecker framework on the verication tasks from SV-COMP 2021.
Labels for each conguration come from the SV-COMP score the conguration
would receive for a given program minus a time penalty. Similar to CPAchecker’s
competition contribution, these congurations are symbolic execution [6], value
analysis [7], value analysis with CEGAR [7], predicate analysis [5], and bounded
model checking with k-induction [4]. To prevent Graves-CPA from overtting
to the SV-COMP benchmarks, we train on a subset of the dataset, only utilizing
20% of it. Like previous iterations of PeSCo, the network is trained to rank the
congurations in the order in which they should be executed.

Graves-CPA uses the machine learning libraries PyTorch [13] and PyTorch-
Geometric [8], an extension of PyTorch for graphs and other irregularly shaped
data, to implement its machine learning components. Graves-CPA is imple-
mented using a combination of Python, C++, and Java.

2.3 Execution

Using the ordering produced by the previous step, CPAchecker is run in a se-
quential fashion with each verication conguration. If a technique goes past a
given time limit or fails to produce a result, the next technique is executed.

442 W. Leeson et al.



3 Strengths and Weaknesses

Graves-CPA operates on program graphs which are an abstraction of the pro-
gram. Its underlying model uses this abstraction to learn what software patterns
a particular verication technique excels at handling. This allows Graves-CPA

to produce a dynamic ordering which should run techniques more equipped to
the given problem rst, reducing run time. In [11], the authors perform a qual-
itative study which suggests the network learns to rank verication techniques
using program features an expert would use to decide between techniques.

In SV-COMP 2022 [2], there were 4,548 problems both Graves-CPA and
CPA-checker reported the correct result. Graves-CPA’s dynamic selection of
CPA-checker’s static conguration ordering allowed it to solve these problems
37 hours faster. Further, Graves-CPA was able to solve 142 problems that
CPAchecker could not, due to resource constraints or other issues.

Machine learning relies on the fact that training data is representative of the
real world. If this is not the case, the model can easily make poor predictions.
These poor decisions can be seen in competition in the 559 instances where
Graves-CPA chooses an ordering that doesn’t produce the correct result, but
CPAchecker does. In most of these instances, Graves-CPA runs out of resources
or incorrectly predicts the remaining techniques will not produce a correct result.

4 Tool Setup and Conguration

Graves-CPA is built on the PeSCo codebase, which in turn is built on the
CPAchecker codebase, and participates in the ReachSafety and Overall cate-
gories. It can be downloaded as a fork: https://github.com/will-leeson/cpachecker.
Graves-CPA requires cmake, LLVM, either make or ninja, and ant (a CPAchecker
dependency) to be built and the python libraries PyTorch and PyTorch-Geometric
to be executed. To build the project, simply run the shell script setup.sh and
add our graph generation tool, graph-builder, to your path. Now, you may
verify a program with Graves-CPA using the command:

scripts/cpa.sh -svcomp22-graves -spec [prop.prp] [file.c]

5 Software Project and Contributions

Graves-CPA is an open source project developed by the authors at the Uni-
versity of Virginia. We would like to thank the team behind the PeSCo and
CPAChecker tools for allowing us to build on their work.

Acknowledgements

We would like to thank Hongning Wang for his advice on graph neural networks
and prediction systems. This material is based in part upon work supported by
the U.S. Army Research Oce under grant number W911NF-19-1-0054 and by
the DARPA ARCOS program under contract FA8750-20-C-0507.

Graves-CPA 443



References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, principles, techniques. Addison
wesley 7(8), 9 (1986)

2. Beyer, D.: Progress on software verication: SV-COMP 2022. In: Proc. TACAS (2).
Springer (2022)

3. Beyer, D., Dangl, M.: Strategy selection for software verication based on boolean
features. In: Margaria, T., Steen, B. (eds.) Leveraging Applications of Formal
Methods, Verication and Validation. Verication. pp. 144–159. Springer Interna-
tional Publishing, Cham (2018)

4. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-rened
invariants. In: International Conference on Computer Aided Verication. pp. 622–
640. Springer (2015)

5. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction with adjustable-
block encoding. In: Formal Methods in Computer Aided Design. pp. 189–197. IEEE
(2010)

6. Beyer, D., Lemberger, T.: Cpa-symexec: ecient symbolic execution in cpachecker.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. pp. 900–903 (2018)

7. Beyer, D., Löwe, S.: Explicit-state software model checking based on cegar and in-
terpolation. In: International Conference on Fundamental Approaches to Software
Engineering. pp. 146–162. Springer (2013)

8. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

9. Johnson, R., Vlissides, J.: Design patterns. Elements of Reusable Object-Oriented
Software Addison-Wesley, Reading (1995)

10. Lattner, C.: Clang: a c language family frontend for llvm, https://clang.llvm.org/
11. Leeson, W., Dwyer, M.B.: Algorithm selection for software verication using graph

attention networks (2022), https://arxiv.org/abs/2201.11711
12. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural

networks (2017)
13. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chin-
tala, S.: Pytorch: An imperative style, high-performance deep learning library. In:
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc. (2019), https://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

14. Richter, C., Wehrheim, H.: Pesco: Predicting sequential combinations of veriers.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 229–233. Springer (2019)

15. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE transactions on neural networks 20(1), 61–80 (2008)

16. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

17. Xu, K., Li, C., Tian, Y., Sonobe, T., ichi Kawarabayashi, K., Jegelka, S.: Repre-
sentation learning on graphs with jumping knowledge networks (2018)

444 W. Leeson et al.



Graves-CPA 445

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and


